Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 421
Filtrar
2.
Brain Commun ; 6(1): fcad352, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38187877

RESUMO

Diffusion MRI has provided insight into the widespread structural connectivity changes that characterize epilepsies. Although syndrome-specific white matter abnormalities have been demonstrated, studies to date have predominantly relied on statistical comparisons between patient and control groups. For diffusion MRI techniques to be of clinical value, they should be able to detect white matter microstructural changes in individual patients. In this study, we apply an individualized approach to a technique known as fixel-based analysis, to examine fibre-tract-specific abnormalities in individuals with epilepsy. We explore the potential clinical value of this individualized fixel-based approach in epilepsy patients with differing syndromic diagnoses. Diffusion MRI data from 90 neurologically healthy control participants and 10 patients with epilepsy (temporal lobe epilepsy, progressive myoclonus epilepsy, and Dravet Syndrome, malformations of cortical development) were included in this study. Measures of fibre density and cross-section were extracted for all participants across brain white matter fixels, and mean values were computed within select tracts-of-interest. Scanner harmonized and normalized data were then used to compute Z-scores for individual patients with epilepsy. White matter abnormalities were observed in distinct patterns in individual patients with epilepsy, both at the tract and fixel level. For patients with specific epilepsy syndromes, the detected white matter abnormalities were in line with expected syndrome-specific clinical phenotypes. In patients with lesional epilepsies (e.g. hippocampal sclerosis, periventricular nodular heterotopia, and bottom-of-sulcus dysplasia), white matter abnormalities were spatially concordant with lesion location. This proof-of-principle study demonstrates the clinical potential of translating advanced diffusion MRI methodology to individual-patient-level use in epilepsy. This technique could be useful both in aiding diagnosis of specific epilepsy syndromes, and in localizing structural abnormalities, and is readily amenable to other neurological disorders. We have included code and data for this study so that individualized white matter changes can be explored robustly in larger cohorts in future work.

3.
Curr Opin Neurol ; 37(2): 105-114, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38235675

RESUMO

PURPOSE OF REVIEW: Over the past decade, it has become clear that brain somatic mosaicism is an important contributor to many focal epilepsies. The number of cases and the range of underlying pathologies with somatic mosaicism are rapidly increasing. This growth in somatic variant discovery is revealing dysfunction in distinct molecular pathways in different focal epilepsies. RECENT FINDINGS: We briefly summarize the current diagnostic yield of pathogenic somatic variants across all types of focal epilepsy where somatic mosaicism has been implicated and outline the specific molecular pathways affected by these variants. We will highlight the recent findings that have increased diagnostic yields such as the discovery of pathogenic somatic variants in novel genes, and new techniques that allow the discovery of somatic variants at much lower variant allele fractions. SUMMARY: A major focus will be on the emerging evidence that somatic mosaicism may contribute to some of the more common focal epilepsies such as temporal lobe epilepsy with hippocampal sclerosis, which could lead to it being re-conceptualized as a genetic disorder.


Assuntos
Epilepsias Parciais , Epilepsia do Lobo Temporal , Humanos , Mosaicismo , Epilepsias Parciais/genética , Encéfalo , Mutação
4.
Acta Neuropsychiatr ; 36(1): 17-28, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37114460

RESUMO

OBJECTIVE: People with neuropsychiatric symptoms often experience delay in accurate diagnosis. Although cerebrospinal fluid neurofilament light (CSF NfL) shows promise in distinguishing neurodegenerative disorders (ND) from psychiatric disorders (PSY), its accuracy in a diagnostically challenging cohort longitudinally is unknown. METHODS: We collected longitudinal diagnostic information (mean = 36 months) from patients assessed at a neuropsychiatry service, categorising diagnoses as ND/mild cognitive impairment/other neurological disorders (ND/MCI/other) and PSY. We pre-specified NfL > 582 pg/mL as indicative of ND/MCI/other. RESULTS: Diagnostic category changed from initial to final diagnosis for 23% (49/212) of patients. NfL predicted the final diagnostic category for 92% (22/24) of these and predicted final diagnostic category overall (ND/MCI/other vs. PSY) in 88% (187/212), compared to 77% (163/212) with clinical assessment alone. CONCLUSIONS: CSF NfL improved diagnostic accuracy, with potential to have led to earlier, accurate diagnosis in a real-world setting using a pre-specified cut-off, adding weight to translation of NfL into clinical practice.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doenças Neurodegenerativas , Humanos , Doença de Alzheimer/diagnóstico , Proteínas de Neurofilamentos/líquido cefalorraquidiano , Filamentos Intermediários , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/líquido cefalorraquidiano , Disfunção Cognitiva/diagnóstico , Biomarcadores/líquido cefalorraquidiano
6.
Aust N Z J Psychiatry ; 58(1): 70-81, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37477141

RESUMO

OBJECTIVE: Blood biomarkers of neuronal injury such as neurofilament light (NfL) show promise to improve diagnosis of neurodegenerative disorders and distinguish neurodegenerative from primary psychiatric disorders (PPD). This study investigated the diagnostic utility of plasma NfL to differentiate behavioural variant frontotemporal dementia (bvFTD, a neurodegenerative disorder commonly misdiagnosed initially as PPD), from PPD, and performance of large normative/reference data sets and models. METHODS: Plasma NfL was analysed in major depressive disorder (MDD, n = 42), bipolar affective disorder (BPAD, n = 121), treatment-resistant schizophrenia (TRS, n = 82), bvFTD (n = 22), and compared to the reference cohort (Control Group 2, n = 1926, using GAMLSS modelling), and age-matched controls (Control Group 1, n = 96, using general linear models). RESULTS: Large differences were seen between bvFTD (mean NfL 34.9 pg/mL) and all PPDs and controls (all < 11 pg/mL). NfL distinguished bvFTD from PPD with high accuracy, sensitivity (86%), and specificity (88%). GAMLSS models using reference Control Group 2 facilitated precision interpretation of individual levels, while performing equally to or outperforming models using local controls. Slightly higher NfL levels were found in BPAD, compared to controls and TRS. CONCLUSIONS: This study adds further evidence on the diagnostic utility of NfL to distinguish bvFTD from PPD of high clinical relevance to a bvFTD differential diagnosis, and includes the largest cohort of BPAD to date. Using large reference cohorts, GAMLSS modelling and the interactive Internet-based application we developed, may have important implications for future research and clinical translation. Studies are underway investigating utility of plasma NfL in diverse neurodegenerative and primary psychiatric conditions in real-world clinical settings.


Assuntos
Doença de Alzheimer , Transtorno Bipolar , Transtorno Depressivo Maior , Demência Frontotemporal , Transtornos Psicóticos , Humanos , Doença de Alzheimer/diagnóstico , Biomarcadores , Transtorno Bipolar/diagnóstico , Transtorno Depressivo Maior/diagnóstico , Demência Frontotemporal/diagnóstico , Filamentos Intermediários
7.
Epilepsia Open ; 9(2): 602-612, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38135919

RESUMO

OBJECTIVE: Lennox-Gastaut syndrome (LGS) is an archetypal developmental and epileptic encephalopathy, for which novel treatments are emerging. Diagnostic criteria for LGS have recently been defined by the International League Against Epilepsy (ILAE). We aimed to apply these criteria in a real-world setting. METHODS: We applied ILAE diagnostic criteria to a cohort of patients diagnosed with LGS by epileptologists following inpatient video-EEG monitoring (VEM) at tertiary comprehensive epilepsy centers between 1995 and 2015. We also assessed mortality in this cohort. RESULTS: Sixty patients diagnosed with LGS and had complete records available for review were identified. Among them, 29 (48%) patients met ILAE diagnostic criteria for LGS (ILAE-DC group). Thirty-one did not meet criteria (non-ILAE-DC) due to the absence of documented tonic seizures (n = 7), EEG features (n = 12), or both tonic seizures and EEG features (n = 10), intellectual disability (n = 1), or drug resistance (n = 1). The ILAE-DC group had a shorter duration of epilepsy at VEM than the non-ILAE-DC group (median = 12.0 years vs. 23.7 years, respectively; p = 0.015). The proportions of patients with multiple seizure types (100% vs. 96.7%), ≤2.5 Hz slow spike-and-wave EEG activity (100% vs. 90%), seizure-related injuries (27.6% vs. 25.8%), and mortality (standardized mortality ratio 4.60 vs. 5.12) were similar between the groups. SIGNIFICANCE: Up to 52% of patients diagnosed with LGS following VEM may not meet recently accepted ILAE criteria for LGS diagnosis. This may reflect both the limitations of retrospective medical record review and a historical tendency of applying the LGS diagnosis to a broad spectrum of severe, early-onset drug-resistant epilepsies with drop attacks. The ILAE criteria allow the delineation of LGS based on distinct electroclinical features, potentiating accurate diagnosis, prognostication, and management formulation. Nonetheless, mortality outcomes between those who did and did not meet ILAE diagnostic criteria for LGS were similarly poor, and both groups suffered high rates of seizure-related injury. PLAIN LANGUAGE SUMMARY: More than half of patients diagnosed with Lennox-Gastaut Syndrome (LGS) at three Australian epilepsy monitoring units between 1995 and 2015 did not meet the recently devised International League Against Epilepsy (ILAE) diagnostic criteria for LGS. Mortality was equally high in those who did and did not meet the ILAE diagnostic criteria, and seizure-related injury was common. The ILAE diagnostic criteria will guide accurate diagnosis, management, prognostication, and research in patients with LGS, however may be limited in their practical application to patients with a longer duration of epilepsy, or to those for whom detailed assessment is difficult.


Assuntos
Epilepsia , Síndrome de Lennox-Gastaut , Humanos , Síndrome de Lennox-Gastaut/diagnóstico , Síndrome de Lennox-Gastaut/terapia , Estudos Retrospectivos , Austrália , Convulsões
8.
medRxiv ; 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37873138

RESUMO

Sequence-based genetic testing currently identifies causative genetic variants in ∼50% of individuals with developmental and epileptic encephalopathies (DEEs). Aberrant changes in DNA methylation are implicated in various neurodevelopmental disorders but remain unstudied in DEEs. Rare epigenetic variations ("epivariants") can drive disease by modulating gene expression at single loci, whereas genome-wide DNA methylation changes can result in distinct "episignature" biomarkers for monogenic disorders in a growing number of rare diseases. Here, we interrogate the diagnostic utility of genome-wide DNA methylation array analysis on peripheral blood samples from 516 individuals with genetically unsolved DEEs who had previously undergone extensive genetic testing. We identified rare differentially methylated regions (DMRs) and explanatory episignatures to discover causative and candidate genetic etiologies in 10 individuals. We then used long-read sequencing to identify DNA variants underlying rare DMRs, including one balanced translocation, three CG-rich repeat expansions, and two copy number variants. We also identify pathogenic sequence variants associated with episignatures; some had been missed by previous exome sequencing. Although most DEE genes lack known episignatures, the increase in diagnostic yield for DNA methylation analysis in DEEs is comparable to the added yield of genome sequencing. Finally, we refine an episignature for CHD2 using an 850K methylation array which was further refined at higher CpG resolution using bisulfite sequencing to investigate potential insights into CHD2 pathophysiology. Our study demonstrates the diagnostic yield of genome-wide DNA methylation analysis to identify causal and candidate genetic causes as ∼2% (10/516) for unsolved DEE cases.

9.
Neurol Clin Pract ; 13(5): e200187, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37664134

RESUMO

Myoclonus is often approached in different ways by epileptologists and movement disorder specialists, leading to confusion in the literature. Multiplicity and inconsistency over the past 2 centuries resulted in a lack of precision and ambiguity of the terminology. We show that this is a current problem in which one phenomenon has been described with many terms and vice versa. Of more importance, we discuss the conceptualization of myoclonus from perspectives of both fields and focus on the borderland that exists, especially in the spectrum of cortical and epileptic myoclonus. By giving 2 examples, we illustrate the conundrum: the spectrum of progressive myoclonus epilepsies and progressive myoclonic ataxias and "cortical tremor" observed in familial cortical myoclonic tremor with epilepsy or familial adult myoclonic epilepsy. We attempt to facilitate to bridge these subspecialties and form the base for a uniform understanding to take this issue forward toward future classifications, discussions, and scientific research.

10.
Epilepsy Res ; 196: 107222, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37717505

RESUMO

OBJECTIVE: The neuropsychological profile of patients with psychosis of epilepsy (POE) has received limited research attention. Recent neuroimaging work in POE has identified structural network pathology in the default mode network and the cognitive control network. This study examined the neuropsychological profile of POE focusing on cognitive domains subserved by these networks. METHODS: Twelve consecutive patients with a diagnosis of POE were prospectively recruited from the Comprehensive Epilepsy Programmes at The Royal Melbourne, Austin and St Vincent's Hospitals, Melbourne, Australia between January 2015 and February 2017. They were compared to 12 matched patients with epilepsy but no psychosis and 42 healthy controls on standardised neuropsychological tests of memory and executive functioning in a case-control design. RESULTS: Mean scores across all cognitive tasks showed a graded pattern of impairment, with the POE group showing the poorest performance, followed by the epilepsy without psychosis and the healthy control groups. This was associated with significant group-level differences on measures of working memory (p = < 0.01); immediate (p = < 0.01) and delayed verbal recall (p = < 0.01); visual memory (p < 0.001); and verbal fluency (p = 0.02). In particular, patients with POE performed significantly worse than the healthy control group on measures of both cognitive control (p = .005) and memory (p < .001), whereas the epilepsy without psychosis group showed only memory difficulties (delayed verbal recall) compared to healthy controls (p = .001). CONCLUSION: People with POE show reduced performance in neuropsychological functions supported by the default mode and cognitive control networks, when compared to both healthy participants and people with epilepsy without psychosis.


Assuntos
Epilepsia , Humanos , Epilepsia/complicações , Função Executiva , Nível de Saúde , Voluntários Saudáveis , Memória de Curto Prazo
11.
Neurobiol Dis ; 185: 106261, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37579995

RESUMO

Hypothalamic hamartoma (HH) is a rare benign developmental brain lesion commonly associated with a well characterized epilepsy phenotype. Most individuals with HH are non-syndromic without additional developmental anomalies nor a family history of disease. Nonetheless, HH is a feature of Pallister-Hall (PHS) and Oro-Facial-Digital Type VI (OFD VI) syndromes, both characterized by additional developmental anomalies. Initial genetic of analysis HH began with syndromic HH, where germline inherited or de novo variants in GLI3, encoding a central transcription factor in the sonic hedgehog (Shh) signalling pathway, were identified in most individuals with PHS. Following these discoveries in syndromic HH, the hypothesis that post-zygotic mosaicism in related genes may underly non-syndromic HH was tested. We discuss the identified mosaic variants within individuals with non-syndromic HH, review the analytical methodologies and diagnostic yields, and explore understanding of the functional role of the implicated genes with respect to Shh signalling, and cilia development and function. We also outline future challenges in studying non-syndromic HH and suggest potential novel strategies to interrogate brain mosaicism in HH.


Assuntos
Proteínas Hedgehog , Mosaicismo , Proteínas Hedgehog/genética , Cílios/metabolismo , Encéfalo/metabolismo
12.
Epileptic Disord ; 25(5): 670-680, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37616028

RESUMO

Progressive Myoclonus Epilepsy (PME) is a rare epilepsy syndrome characterized by the development of progressively worsening myoclonus, ataxia, and seizures. A molecular diagnosis can now be established in approximately 80% of individuals with PME. Almost fifty genetic causes of PME have now been established, although some remain extremely rare. Herein, we provide a review of clinical phenotypes and genotypes of the more commonly encountered PMEs. Using an illustrative case example, we describe appropriate clinical investigation and therapeutic strategies to guide the management of this often relentlessly progressive and devastating epilepsy syndrome. This manuscript in the Genetic Literacy series maps to Learning Objective 1.2 of the ILAE Curriculum for Epileptology (Epileptic Disord. 2019;21:129).

13.
Genes (Basel) ; 14(8)2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37628618

RESUMO

Aicardi Syndrome (AIC) is a rare neurodevelopmental disorder recognized by the classical triad of agenesis of the corpus callosum, chorioretinal lacunae and infantile epileptic spasms syndrome. The diagnostic criteria of AIC were revised in 2005 to include additional phenotypes that are frequently observed in this patient group. AIC has been traditionally considered as X-linked and male lethal because it almost exclusively affects females. Despite numerous genetic and genomic investigations on AIC, a unifying X-linked cause has not been identified. Here, we performed exome and genome sequencing of 10 females with AIC or suspected AIC based on current criteria. We identified a unique de novo variant, each in different genes: KMT2B, SLF1, SMARCB1, SZT2 and WNT8B, in five of these females. Notably, genomic analyses of coding and non-coding single nucleotide variants, short tandem repeats and structural variation highlighted a distinct lack of X-linked candidate genes. We assessed the likely pathogenicity of our candidate autosomal variants using the TOPflash assay for WNT8B and morpholino knockdown in zebrafish (Danio rerio) embryos for other candidates. We show expression of Wnt8b and Slf1 are restricted to clinically relevant cortical tissues during mouse development. Our findings suggest that AIC is genetically heterogeneous with implicated genes converging on molecular pathways central to cortical development.


Assuntos
Síndrome de Aicardi , Masculino , Feminino , Animais , Camundongos , Síndrome de Aicardi/genética , Peixe-Zebra/genética , Mapeamento Cromossômico , Genes Ligados ao Cromossomo X/genética , Bioensaio
14.
Ann Neurol ; 94(5): 825-835, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37597255

RESUMO

OBJECTIVE: Familial mesial temporal lobe epilepsy (FMTLE) is an important focal epilepsy syndrome; its molecular genetic basis is unknown. Clinical descriptions of FMTLE vary between a mild syndrome with prominent déjà vu to a more severe phenotype with febrile seizures and hippocampal sclerosis. We aimed to refine the phenotype of FMTLE by analyzing a large cohort of patients and asked whether common risk variants for focal epilepsy and/or febrile seizures, measured by polygenic risk scores (PRS), are enriched in individuals with FMTLE. METHODS: We studied 134 families with ≥ 2 first or second-degree relatives with temporal lobe epilepsy, with clear mesial ictal semiology required in at least one individual. PRS were calculated for 227 FMTLE cases, 124 unaffected relatives, and 16,077 population controls. RESULTS: The age of patients with FMTLE onset ranged from 2.5 to 70 years (median = 18, interquartile range = 13-28 years). The most common focal seizure symptom was déjà vu (62% of cases), followed by epigastric rising sensation (34%), and fear or anxiety (22%). The clinical spectrum included rare cases with drug-resistance and/or hippocampal sclerosis. FMTLE cases had a higher mean focal epilepsy PRS than population controls (odds ratio = 1.24, 95% confidence interval = 1.06, 1.46, p = 0.007); in contrast, no enrichment for the febrile seizure PRS was observed. INTERPRETATION: FMTLE is a generally mild drug-responsive syndrome with déjà vu being the commonest symptom. In contrast to dominant monogenic focal epilepsy syndromes, our molecular data support a polygenic basis for FMTLE. Furthermore, the PRS data suggest that sub-genome-wide significant focal epilepsy genome-wide association study single nucleotide polymorphisms are important risk variants for FMTLE. ANN NEUROL 2023;94:825-835.


Assuntos
Epilepsia do Lobo Temporal , Convulsões Febris , Humanos , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Epilepsia do Lobo Temporal/genética , Epilepsia do Lobo Temporal/diagnóstico , Estudo de Associação Genômica Ampla , Convulsões Febris/genética , Imageamento por Ressonância Magnética , Eletroencefalografia , Síndrome , Hipocampo
15.
JAMA Neurol ; 80(6): 578-587, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37126322

RESUMO

Importance: Mesial temporal lobe epilepsy (MTLE) is the most common focal epilepsy subtype and is often refractory to antiseizure medications. While most patients with MTLE do not have pathogenic germline genetic variants, the contribution of postzygotic (ie, somatic) variants in the brain is unknown. Objective: To test the association between pathogenic somatic variants in the hippocampus and MTLE. Design, Setting, and Participants: This case-control genetic association study analyzed the DNA derived from hippocampal tissue of neurosurgically treated patients with MTLE and age-matched and sex-matched neurotypical controls. Participants treated at level 4 epilepsy centers were enrolled from 1988 through 2019, and clinical data were collected retrospectively. Whole-exome and gene-panel sequencing (each genomic region sequenced more than 500 times on average) were used to identify candidate pathogenic somatic variants. A subset of novel variants was functionally evaluated using cellular and molecular assays. Patients with nonlesional and lesional (mesial temporal sclerosis, focal cortical dysplasia, and low-grade epilepsy-associated tumors) drug-resistant MTLE who underwent anterior medial temporal lobectomy were eligible. All patients with available frozen tissue and appropriate consents were included. Control brain tissue was obtained from neurotypical donors at brain banks. Data were analyzed from June 2020 to August 2022. Exposures: Drug-resistant MTLE. Main Outcomes and Measures: Presence and abundance of pathogenic somatic variants in the hippocampus vs the unaffected temporal neocortex. Results: Of 105 included patients with MTLE, 53 (50.5%) were female, and the median (IQR) age was 32 (26-44) years; of 30 neurotypical controls, 11 (36.7%) were female, and the median (IQR) age was 37 (18-53) years. Eleven pathogenic somatic variants enriched in the hippocampus relative to the unaffected temporal neocortex (median [IQR] variant allele frequency, 1.92 [1.5-2.7] vs 0.3 [0-0.9]; P = .01) were detected in patients with MTLE but not in controls. Ten of these variants were in PTPN11, SOS1, KRAS, BRAF, and NF1, all predicted to constitutively activate Ras/Raf/mitogen-activated protein kinase (MAPK) signaling. Immunohistochemical studies of variant-positive hippocampal tissue demonstrated increased Erk1/2 phosphorylation, indicative of Ras/Raf/MAPK activation, predominantly in glial cells. Molecular assays showed abnormal liquid-liquid phase separation for the PTPN11 variants as a possible dominant gain-of-function mechanism. Conclusions and Relevance: Hippocampal somatic variants, particularly those activating Ras/Raf/MAPK signaling, may contribute to the pathogenesis of sporadic, drug-resistant MTLE. These findings may provide a novel genetic mechanism and highlight new therapeutic targets for this common indication for epilepsy surgery.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia do Lobo Temporal , Epilepsia , Neocórtex , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Masculino , Epilepsia do Lobo Temporal/cirurgia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Estudos Retrospectivos , Hipocampo/patologia , Epilepsia/patologia
16.
Epilepsia ; 64(7): 1833-1841, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37039534

RESUMO

OBJECTIVE: This study was undertaken to analyze phenotypic features of a cohort of patients with protracted CLN3 disease to improve recognition of the disorder. METHODS: We analyzed phenotypic data of 10 patients from six families with protracted CLN3 disease. Haplotype analysis was performed in three reportedly unrelated families. RESULTS: Visual impairment was the initial symptom, with onset at 5-9 years, similar to classic CLN3 disease. Mean time from onset of visual impairment to seizures was 12 years (range = 6-41 years). Various seizure types were reported, most commonly generalized tonic-clonic seizures; focal seizures were present in four patients. Progressive myoclonus epilepsy was not seen. Interictal electroencephalogram revealed mild background slowing and 2.5-3.5-Hz spontaneous generalized spike-wave discharges. Additional interictal focal epileptiform discharges were noted in some patients. Age at death for the three deceased patients was 31, 31, and 52 years. Molecular testing revealed five individuals were homozygous for c.461-280_677 + 382del966, the "common 1-kb" CLN3 deletion. The remaining individuals were compound heterozygous for various combinations of recurrent pathogenic CLN3 variants. Haplotype analysis demonstrated evidence of a common founder for the common 1-kb deletion. Dating analysis suggested the deletion arose approximately 1500 years ago and thus did not represent cryptic familial relationship in this Australian cohort. SIGNIFICANCE: We highlight the protracted phenotype of a disease generally associated with death in adolescence, which is a combined focal and generalized epilepsy syndrome with progressive neurological deterioration. The disorder should be suspected in an adolescent or adult patient presenting with generalized or focal seizures preceded by progressive visual loss. The common 1-kb deletion has been typically associated with classic CLN3 disease, and the protracted phenotype has not previously been reported with this genotype. This suggests that modifying genetic factors may be important in determining this somewhat milder phenotype and identification of these factors should be the subject of future research.


Assuntos
Epilepsia Generalizada , Lipofuscinoses Ceroides Neuronais , Humanos , Lipofuscinoses Ceroides Neuronais/complicações , Lipofuscinoses Ceroides Neuronais/diagnóstico , Lipofuscinoses Ceroides Neuronais/genética , Austrália , Convulsões/diagnóstico , Genótipo , Glicoproteínas de Membrana/genética , Chaperonas Moleculares/genética
17.
medRxiv ; 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36865150

RESUMO

Identifying genetic risk factors for highly heterogeneous disorders like epilepsy remains challenging. Here, we present the largest whole-exome sequencing study of epilepsy to date to investigate rare variants that confer risk for a spectrum of epilepsy syndromes. With an unprecedented sample size of >54,000 human exomes, composed of 20,979 deep-phenotyped patients with epilepsy and 33,444 controls, we replicate previous gene findings at exome-wide significance; using a hypothesis-free approach, we identify potential novel associations. Most discoveries are specific to a particular subtype of epilepsy, highlighting distinct genetic contributions to different epilepsies. Combining evidence from rare single nucleotide/short indel-, copy number-, and common variants, we find convergence of different genetic risk factors at the level of individual genes. Further comparing to other exome-sequencing studies, we implicate shared rare variant risk between epilepsy and other neurodevelopmental disorders. Our study also demonstrates the value of collaborative sequencing and deep-phenotyping efforts, which will continue to unravel the complex genetic architecture underlying the heterogeneity of epilepsy.

18.
Epilepsia ; 64(5): 1368-1375, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36808730

RESUMO

OBJECTIVE: "How many epilepsy genes are there?" is a frequently asked question. We sought to (1) provide a curated list of genes that cause monogenic epilepsies, and (2) compare and contrast epilepsy gene panels from multiple sources. METHODS: We compared genes included on the epilepsy panels (as of July 29, 2022) of four clinical diagnostic providers: Invitae, GeneDx, Fulgent Genetics, and Blueprint Genetics; and two research resources: PanelApp Australia and ClinGen. A master list of all unique genes was supplemented by additional genes identified via PubMed searches up until August 15, 2022, using the search terms "genetics" AND/OR "epilepsy" AND/OR "seizures". Evidence supporting a monogenic role for all genes was manually reviewed; those with limited or disputed evidence were excluded. All genes were annotated according to inheritance pattern and broad epilepsy phenotype. RESULTS: The comparison of genes included on epilepsy clinical panels revealed high heterogeneity in both number of genes (range: 144-511) and content. Just 111 genes (15.5%) were included on all four clinical panels. Subsequent manual curation of all "epilepsy genes" identified >900 monogenic etiologies. Almost 90% of genes were associated with developmental and epileptic encephalopathies. By comparison only 5% of genes were associated with monogenic causes of "common epilepsies" (i.e., generalized and focal epilepsy syndromes). Autosomal recessive genes were most frequent (56% of genes); however, this varied according to the associated epilepsy phenotype(s). Genes associated with common epilepsy syndromes were more likely to be dominantly inherited and associated with multiple epilepsy types. SIGNIFICANCE: Our curated list of monogenic epilepsy genes is publicly available: github.com/bahlolab/genes4epilepsy and will be regularly updated. This gene resource can be utilized to target genes beyond those included on clinical gene panels, for gene enrichment methods and candidate gene prioritization. We invite ongoing feedback and contributions from the scientific community via genes4-epilepsy@unimelb.edu.au.


Assuntos
Epilepsias Parciais , Epilepsia Generalizada , Epilepsia , Síndromes Epilépticas , Humanos , Epilepsia/genética , Austrália
19.
Epilepsia ; 64(8): e164-e169, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36810721

RESUMO

The progressive myoclonus epilepsies (PMEs) are a heterogeneous group of neurodegenerative disorders, typically presenting in late childhood. An etiologic diagnosis is achieved in about 80% of patients with PME, and genome-wide molecular studies on remaining, well-selected, undiagnosed cases can further dissect the underlying genetic heterogeneity. Through whole-exome sequencing (WES), we identified pathogenic truncating variants in the IRF2BPL gene in two, unrelated patients presenting with PME. IRF2BPL belongs to the transcriptional regulators family and it is expressed in multiple human tissues, including the brain. Recently missense and nonsense mutations in IRF2BPL were found in patients presenting with developmental delay and epileptic encephalopathy, ataxia, and movement disorders, but none with clear PME. We identified 13 other patients in the literature with myoclonic seizures and IRF2BPL variants. There was no clear genotype-phenotype correlation. With the description of these cases, the IRF2BPL gene should be considered in the list of genes to be tested in the presence of PME, in addition to patients with neurodevelopmental or movement disorders.


Assuntos
Epilepsias Mioclônicas , Transtornos dos Movimentos , Epilepsias Mioclônicas Progressivas , Humanos , Criança , Epilepsias Mioclônicas Progressivas/genética , Convulsões/genética , Genótipo , Proteínas de Transporte/genética , Proteínas Nucleares/genética
20.
Epilepsia Open ; 8(2): 334-345, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36648376

RESUMO

OBJECTIVE: In vitro data prompted U.S Food and Drug Administration warnings that lamotrigine, a common sodium channel modulating anti-seizure medication (NaM-ASM), could increase the risk of sudden death in patients with structural or ischaemic cardiac disease, however, its implications for Sudden Unexpected Death in Epilepsy (SUDEP) are unclear. METHODS: This retrospective, nested case-control study identified 101 sudden unexpected death in epilepsy (SUDEP) cases and 199 living epilepsy controls from Epilepsy Monitoring Units (EMUs) in Australia and the USA. Differences in proportions of lamotrigine and NaM-ASM use were compared between cases and controls at the time of admission, and survival analyses from the time of admission up to 16 years were conducted. Multivariable logistic regression and survival analyses compared each ASM subgroup adjusting for SUDEP risk factors. RESULTS: Proportions of cases and controls prescribed lamotrigine (P = 0.166), one NaM-ASM (P = 0.80), or ≥2NaM-ASMs (P = 0.447) at EMU admission were not significantly different. Patients taking lamotrigine (adjusted hazard ratio [aHR] = 0.56; P = 0.054), one NaM-ASM (aHR = 0.8; P = 0.588) or ≥2 NaM-ASMs (aHR = 0.49; P = 0.139) at EMU admission were not at increased SUDEP risk up to 16 years following admission. Active tonic-clonic seizures at EMU admission associated with >2-fold SUDEP risk, irrespective of lamotrigine (aHR = 2.24; P = 0.031) or NaM-ASM use (aHR = 2.25; P = 0.029). Sensitivity analyses accounting for incomplete ASM data at follow-up suggest undetected changes to ASM use are unlikely to alter our results. SIGNIFICANCE: This study provides additional evidence that lamotrigine and other NaM-ASMs are unlikely to be associated with an increased long-term risk of SUDEP, up to 16 years post-EMU admission.


Assuntos
Epilepsia , Morte Súbita Inesperada na Epilepsia , Estados Unidos , Humanos , Lamotrigina/uso terapêutico , Estudos de Casos e Controles , Estudos Retrospectivos , Anticonvulsivantes/uso terapêutico , Epilepsia/tratamento farmacológico , Epilepsia/complicações , Morte Súbita/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...